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Within the field of supramolecular inorganic chemistry, the Scheme 1. Synthesis of Gold(l) Rings 1 and 2
metal-assisted self-assembly of metallacycles, helicates, racks, pPhy M e ono,
ladders, grids, and cages represents an impressive achievement ofye sjauci - >§: >§: AN e
molecular design and assemBlyhe structure, conformation, and “vcl e

topology of these supramolecules should depend not only on the oo B u-onos
nature of the organic backbone, but also on the nature of the-metal

PPh,

ligand interaction; moreover, unique properties may result when “"""“’5
metal-metal bonds are introducédlhe propensity of gold(l) for
linear coordination geometry featuring AtAu attractions in O oo ;A ,
binuclear precursor molecules has been exploited in constructing Ve, ’

- 2 (Me;S)AuCI + 2 o+ 2AgNO; —>
macrocyclesa’ catenane® ™" and polymers— The Au--Au e 2 Age
interaction generally occurs perpendicular to the principal axis of O PPhe E;;‘""’ ‘"°=‘=

the linearly two-coordinated Au(l) centers, and its typical length

ranges from 2.75 to 3.40 AExperimental and theoretical studies  report on platinum metallacycléghe understanding of fluxionality
indicate that the strength of the aurophilic AwAu attractions is  of gold(l) metallacycles and their structure in solution is also
comparable to that of hydrogen bondin@he short aurophilic  |imjted Therefore, by use of solution X-ray diffraction and NMR
contacts observed in gold(l) supramolecules frequently induce methods we provide insight into the structure as well as the
intriguing spectroscopic and optoelectronic properties. Therefore, gynamics of gold(l) macrocycle. Moreover, the photophysical
such complexes became ideal candidates for use in the developmeng operties ofl and2 were studied by UV-visible and luminescent
of molecular sensors and switches or energy storage devices. spectroscopy.

Eight- to eleven-membered rings in which two or more consecu-  piffraction-quality single crystals of botfh and 2 were grown
tive atoms are gold are relatively few, and macrocycles are evenypy dgiffusion of diethyl ether into a dichloromethane solution of
more raré. Short Au--Au interactions have been observed in eight-  gach individual complex. The crystalsand 2 were isolated in
and nine-membered gold(l) cyclic systems withoPh(CHz)n— Paratone-N cryoprotectant and successfully subjected to low-
PPh diphosphine ligands; moreover, nine-membered gold(l) rings temperature X-ray diffraction study. The X-ray structure determi-
have been prepared using diphosphine ligands derived from rigid nation revealed the existence of disordered solvent molecules in
heteroatomic backbonéddence, it was of interest to see whether g5ch case. Figure 1 shows the skeletoh, @fhere the nitrate anions
the self-assembly of diphosphine ligands derived from heteroatomic gre coordinated to the gold centers bridged by the xantphos ligand
backbones with Au(l) ions would afford macrocycles showing short ggch having a linear coordination geometry and a short 1,9-
Au---Au interactions. transannular Au-Au distance to form a nine-membered ring. The

Herein, we report the synthesis and structural characterization"gand backbone is folded and twisted by 51.4(Hpout the
of nine-membered and 16-membered gold(l) rings showing short py...Au axis, most likely to accommodate the two Au(l) ions
1,9-transannular Au-Au aurophilic interactions. They were pre- gt 3 close distance of 2.950(1) A. The nitrate groups are rotated by
pared by reacting 9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene 59 1(1) and 50.7(2)with respect to the least-squares plane of the
(xantphos) and (M&)AuCI in the presence of AgNQXScheme  pine-membered cycle, and they display a propeller-like arrangement
1). The 2:1 stoichiometric combination of a dichloromethane \yith respect to one another. The crystal structure of the related
solution of (MeS)AuCl and xantphos produced the [(Ausd) [(AuCl)y(u-xantphos)] has been reportéd.

xantphos)] complekwhich was further reacted with AgNDand Complex1 crystallized in the noncentrosymmetric, monoclinic
the resulting [(AUNG)z(u-xantphos)] {) was isolated. Likewise,  space grou2y; thus the molecule is chiral, and the crystal contains
the reaction of (MgS)AuCI with xantphos and AgN§in a molar only one of the two enantiomers, either right- or left-handed.
ratio of 1:1:1 in dichloromethane yields [Aj-xantphos)(NOz), Refinement of the Flack parameter led to a value~@ which

(2). Moreover, the reaction ol with xantphos also gave the  confirms the enantiomeric purity of the crystal. Although many
complex2, indicating thatl is a likely intermediate in the formation  gouple- and triple-helical metal complexes have been repétted,
of 2. o ) i ~ the simpler monohelical complexes have received much less
The structure determination of metallacycles in solution using attentiont! This is perhaps because spontaneous resolution more
X-ray diffraction is a very challenging problem with only a single  |ikely occurs when strong, selective, and directional interactions,

# Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt SUC.h as qoordmatlon an.dlor hydfoge“ b?”d'”g' extend the neigh-
Lake City, UT 84112. boring chiral molecules into multidimensional arrdys.
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Figure 1. Ortep view of the skeleton df, illustrating the nine-membered
gold(l) ring and the coordinated nitrate anions with thermal ellipsoids at
the 30% probability level. Selected distances (A) and angles (deg):
Au(1)—Au(2) 2.950(1); Au(lyP(1) 2.224(3); Au(2yP(2) 2.226(3);
Au(1)—0(2) 2.199(9); Au(2)-O(5) 2.091(8); P(1yAu(1)—0O(2) 168.3(3);
P(2)-Au(2)—0(5) 173.3(3).

Figure 2. View illustrating the C-H---O bonded homochiral helices bf
which are also interconnected by—Ei---O interactions to form an
interhelical network.

As shown in Figure 2, the molecules bare linked throughout
via C—H---O and Au-- interactions into a 2D array. This is
achieved in such a way that one of the nitrate groups with its O(2)
and O(3) atoms is involved as an acceptor in theH=-O hydrogen
bonding. These €H-:-O and additional Au-x interactions link
the molecules ofl into homochiral helices, which are also
interconnected with each other by-@---O contacts (Supporting

2!

Figure 3. Ortep view of the cationic skeleton &, illustrating the 16-
membered gold(l) ring showing a figure-eight conformation [equivalent
atoms generated by= (—x + 1,y, —z + 3/3)] with thermal ellipsoids at
the 30% probability level. Selected distances (A) and angles (deg):
Au(1)--Au(1) 2.858(1); Au(1}-P(1) 2.326(1); Au(LyP(2) 2.331(1); P(ty
Au(1)—P(2) 160.8(1); P(1yAu(1)-Au(l) 102.1(1); P(2)-Au(l)—Au(1)
93.1(1).

into account, the molecule @fexists in a figure-eight conformation,
where the 16-membered ring contains one shortAw linkage
(2.858(1) A), as shown in Figure 3. This represents an example of
a 16-membered ring with a 1,9-transannularAAu interaction.

This structure crystallized in centrosymmetric space grogfc,

thus both right- and left-handed molecules are present in the crystal.

To check whether the nine- and 16-membered gold(l) rings retain
their structure in solution, wide-angle X-ray scattering and NMR
experiments were performed. The solubilitylois extremely low
in the usual protic and aprotic organic solvents, thus solution X-ray
diffraction was not possible. Despite its limited solubility4 mM),
the 'TH NMR of 1 exhibited sharp resonances in €I, at room
temperature. The phosphorus nucleilodt 6 18.3 ppm are more
shielded when compared to the [(Augl)-xantphos)] complex.

The *H and 3P NMR spectra for2 were measured using the
same sample (179 mM) prepared for solution wide-angle X-ray
diffraction experiments. Noteworthy in tAel and3P NMR spectra
are the broad resonances found at room temperature (Supporting
Information Figures S4 and S5). Temperature-deperfdertIMR
experiments or2 were performed, and it was observed that by
raising the temperature t670 °C, the corresponding NMR signals
became much sharper, while after recooling @5 °C) the
complex remained intact. Given that a more dilute (2 mM) solution
of 2 behaved similarly, the most plausible explanation for the room-

Information, Table S1). Thus, all oxygen atoms of the second nitrate temperature line-broadening is the conformational motior2,of

function are involved in €H---O interactions, which connect the
C—H---O and Au--r bonded helices into an interhelical meander-
shaped network. The role of the nitrate anions played in the C
H---O linking of the molecules is chirally discriminative and
required that compled exhibits the same absolute configuration.

Therefore, the chirality is preserved and extended into the crystal.

rather than self-association or oligomerization processes. This has
been further proven by low-temperat#® NMR, where a pair of

AB phosphorus doublets appeared with a large, two-FéRd31P
coupling constant?fp_p = 318.3 Hz,—30 °C), indicating that each
gold atom is bound to two chemically nonequivalent phosphorus
sites. The larg@Je—p scalar coupling mediated by a gold atom fits

To the best of our knowledge this represents the first example of well within the range of reported valuésCoalescence of thiH

crystallization-induced spontaneous resolution of a binuclear gold-

(I) metallacycle. This chiral gold(l) complex has potential in

and 3P resonances near room temperature is attributed to the
interconversion of the mirror image conformer20fhe activation

absolute asymmetric (stereoselective) syntheses where opticallyenthalpy (H¥) for the process was determined By and 3P
active materials are prepared from achiral (or racemic) starting temperature-dependent NMR line shape analyses and found to be

materials in the absence of optically active catalyst or reagents.
The X-ray structural data of indicate that it consists of

[Aux(xantphos)]?™ cations in which two strands of xantphos are

folded relative to each other and held together by two Au(l) ions

AH¥(*H) = +48.9 kd/mol andAH*(P) = +48.4 kJ/mol (Sup-
porting Information Figures S6S9). The good agreement between
the H and 3P activation parameters suggests that the same
exchange phenomenon is followed on both NMR time-scales.

(Figure 3). In addition, the structure contains uncoordinated nitrate Although difficult to separate from steric factors, the experimental
anions, as well as disordered solvent molecules. In this structure, AH¥ is in agreement with literature data®4and is probably only

the ligand backbone is folded and tilted by 72.2(hjith respect
to the Au--Au axis, and the two xantphos ligands bridge the Au(l)
ions to form a short aurophilic attraction. With this interaction taken

a slight overestimation of the aurophilic interaction energy.
To assess the aurophilicity @ after dissolution, the solution
X-ray measurement was performed in high-purity nitromethane
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